제품 소개

P4S-342는 산업용 프로그래밍 보드 입니다. P4S-342를 이용하면 각종 센서나 모터 등을 이용해 다양한 네트워크 시스템을 구축할 수 있습니다.

P4S-342에 프로그래밍을 하기 위해서는 자체 개발한 프로그래밍 언어인 PHPoC(PHP on Chip)를 사용 해야 합니다. PHPoC는 범용 스크립트 언어인 PHP와 호환되며 사용법이 매우 간단하여 누구나 쉽게 사 용할 수 있습니다.

※ PHPoC는 PHP와 기본적으로 호환되지만 임베디드 시스템의 여러 가지 제약에 따라 100% 동일하지 는 않습니다. 이에 관한 보다 자세한 내용은 PHPoC Language Reference 및 PHPoC vs PHP 문서를 참조 하시기 바랍니다.

주요 특징

- 자체 개발 PHPoC 인터프리터 탑재
- USB를 이용한 간편한 개발 환경 제공
- IEEE 802.11b/g 무선랜 지원
- 22개의 디지털 I/O포트 및 6개의 아날로그 입력포트 제공
- 2개의 UART포트를 제공
- 4개의 하드웨어 타이머를 제공
- I2C, SPI 인터페이스를 제공
- 자체 개발 TCP/IP 스택
- 웹 서버 기능 지원
- 웹소켓, 텔넷, SSH 및 SSL 지원
- 다양한 라이브러리 제공: Email, DNS, MySQL 등
- 전용 개발 툴(PHPoC 디버거) 제공

하드웨어 사양

	입력전압 1	DC 5V (±0.5V)
저이	입력전압 2	DC 5V (±0.5V) - USB 디바이스 포트
신권	신미저크	평상시 - 약 85mA(※ USB 무선랜 어댑터 제외),
	소미신뉴	절전모드시 - 200uA 미만
치수		66.5mm x 63.8mm x 13mm
무게		약 27g (※ USB 무선랜 어댑터 제외)
		2 X UART포트(UART0 ~ 1),
	UART	통신속도: 1,200 bps ~ 230,400 bps
	네트이그	IEEE802.11b/g 무선랜
	네느눠그	(Ralink RT3070/5370 chipset 무선랜 동글 필요)
	LICR	USB 호스트 - USB 무선랜 어댑터 연결용
이티페이스	USD	USB 디바이스 - PC 연결용
인터페이스	디지털 입/출력 UIO0: pin #0 ~ #21, #30(LED), #31(LED)	
	아날로그 입력	ADC_CH0 ~ 5, AREF, 12-bit 분해 능
	하드웨어 타이머	HT0 ~ 3, 토글/펄스/PWM출력모드, 캡쳐모드
	SPI	NSS, SCK, MISO, MOSI
	I2C	SCL, SDA
	SPC	STX, SRX, SRO
내장배터리		3V(충전방식)
모서래 ㅂ아		WPA-PSK / WPA2-PSK,
구선한 보인		WPA-Enterprise (TLS/TTLS/PEAP)
온도	동작/저장온도	-20°C ~ 60°C
화경		유럽 RoHS 규격 준수

치수

※ 치수(단위 : mm)는 제품 상태 및 재는 각도 등에 따라 약간의 오차가 있을 수 있습니다.

레이아웃

1. LED

P4S-342 보드에는 6개의 LED가 있습니다.

LED	설명
PWR / 3.3V / PWR5	제품에 전원이 정상적으로 공급되면 켜짐
STS	PHPoC코드 실행 중일 때 > 1초마다 켜짐/꺼짐 반복 PHPoC코드가 실행 중이지 않을 때 > 1번씩 순간적으로 깜박임
UIO30	내장 LED: UIO0의 30번과 연결 됨
UIO31	내장 LED: UIO0의 31번과 연결 됨

※ PWR, STS, UIO30 및 UIO31 LED는 보드의 밑면에도 연결되어 있습니다.

2. 무선랜 어댑터 연결을 위한 USB 호스트 포트

P4S-342는 USB형태의 무선랜어댑터를 연결할 수 있는 USB호스트포트를 제공합니다. 이 포트에 무선랜 어댑터를 연결하면 P4S-342를 802.11b/g 무선네트워크에 연결할 수 있습니다.

※ 주의: 무선랜 어댑터는 Ralink사의 RT3070/5370칩셋 어댑터만 사용 가능합니다

3. 기능 버튼 (FUNC)

이 버튼은 제품을 버튼설정모드로 동작시키는데 사용 됩니다.

4. PC 연결을 위한 마이크로 USB 디바이스 포트

제품과 PC와의 연결을 위한 포트 입니다. 이 포트를 통해 USB케이블로 제품과 PC를 연결한 후 개발 툴(PHPoC 디버거)을 이용해 제품에 접근할 수 있습니다. 또한 이 포트는 제품에 DC 5V의 전원을 공급 하는 역할도 합니다. 단, 이 포트만으로 전원을 공급하는 경우에는 전류가 부족하여 제품 동작이 올바르 지 않을 수 있습니다.

5. 전원 공급

• DC 5V Input 포트

주 전원 입력 포트 입니다. 입력 전압은 DC 5V이며, 포트 사양은 다음과 같습니다.

• USB 디바이스 포트(마이크로 USB)

이 포트는 보조 전원 입력 포트 입니다.

6. 리셋 버튼 (RESET)

이 버튼은 제품을 하드웨어적으로 리셋 하는데 사용합니다.

7. 콘솔 포트

이 포트는 제품 관리용 콘솔 포트 입니다.

구분	값
신호 레벨	3.3V
통신 환경	115,200bps / 8 Data bit / 1 Stop bit / No parity
핀 배치	#1 - 3.3V, #2 - RX, #3 - TX, #4 - GND

8. JP1

이름	설명	이름	설명
3.3V	3.3V 출력	PWR5	입력전원 출력(5V±0.5V)
GND	Ground	AREF	ADC 기준전압 입력포트
AD0	ADC 채널 0	AD3	ADC 채널 3
AD1	ADC 채널 1	AD4	ADC 채널 4
AD2	ADC 채널 2	AD5	ADC 채널 5
GND	Ground	GND	Ground
HT0	하드웨어 타이머 0	HT2	하드웨어 타이머 2
HT1	하드웨어 타이머 1	HT3	하드웨어 타이머 3
	SDI - 스레이너 서태 / 니IIO0 #0	12	UART #1 RTS /UART #1 TxDE /
1133/0	3FI - 글데이드 전국 / 0100 #0	ΤΖ	UIO0 #12
SCK/1	SPI - 클록 / UIO0 #1	13	UART #1 CTS / UIO0 #13
MISO/2	SPI - 마스터 입력 / UIO0 #2	14	UIO0 #14
MOSI/3	SPI - 마스터 출력 / UIO0 #3	15	UIO0 #15
U0TX/4	UART #0 TX / UIO0 #4	16	UIO0 #16
UORX/5	UART #0 RX / UIO0 #5	17	UIO0 #17
SCL/6	I2C - 클록 / UIO0 #6	18	UIO0 #18
SDA/7	I2C - 데이터 / UIO0 #7	19	UIO0 #19
8	UART #0 RTS / UART #0 TxDE / UIO0	20	
0	#8	20	0100 #20
9	UART #0 CTS / UIO0 #9	21	UIO0 #21
U1TX/10	UART #1 TX/ UIO0 #10	STX	SPC 송신
U1RX/11	UART #1 RX/ UIO0 #11	SRX	SPC 수신
GND	Ground	SRO	SPC 리셋
PWR5	입력전원 출력(5V±0.5V)	3.3V	3.3V 출력

9. VDDA-AREF

이 포트를 연결시키면 ADC 입력 기준전압인 AREF포트에 3.3V가 입력 됩니다.

10. 내장배터리

내장배터리는 RTC 및 로그메시지 저장 등의 목적으로 사용됩니다. 내장배터리 사양은 다음과 같습니다.

구분	값
용량	5.8mAh
표준 전압	DC 3V
충전 전압	DC 2.8V ~ 3.1V

※ 내장 배터리에 대한 보다 자세한 내용은 데이터시트를 참조하시기 바랍니다.

통신 인터페이스(JP1)

아날로그 입력: ADC

P4S-342는 6개의 ADC입력 포트를 제공합니다. ADC를 사용하기 위해서는 기준전압 입력이 필요한데 VDDA-AREF점퍼를 연결하면 기준전압 입력핀으로 3.3V가 연결됩니다.

※ P4S-342는 공장 출하시 VDDA-AREF 점퍼가 연결되어 있습니다.

JP4를 이용하지 않고 직접 기준전압을 입력하는 경우에는 AREF핀으로 입력하십시오.

※ 주의: VDDA-AREF점퍼가 연결되어 있는 상태에서 AREF핀으로 전압을 입력하면 제품 고장을 초래할 수 있습니다. 따라서 AREF핀으로 전압을 입력하기 전에 이 점퍼의 연결 상태를 반드시 확인하시기 바랍 니다.

다음은 P4S-342의 ADC 사양입니다.

구분	값
분해 능	12비트 (0 ~ 4095)
입력 방식	DC전압 (최대 3.3V)
채널	6개
연결선	AREF, AD0 ~ 5

하드웨어 타이머: HT

P4S-342는 4개의 하드웨어타이머 HT를 제공합니다. 다음은 P4S-342의 HT 사양입니다.

구분	값
모드	출력모드(토글, 펄스, PWM), 캡쳐모드
단위	ms(밀리 초) 또는 us(마이크로 초)
채널	4개
연결선	HT0 ~ 3

디지털 입/출력: UIO

P4S-342는 0부터 21번까지 22개의 핀과 LED로 연결 된 30, 31번 포트를 포함 총 24개의 디지털 입/출 력 포트가 있습니다. 30번과 31번 포트는 보드의 내장 LED(UIO30 및 UIO31)에 각각 연결 되어 있습니다. 0 ~ 21번의 22개 포트는 디지털 입력 또는 출력으로 선택하여 사용이 가능하지만 시리얼통신과 겸용인 0~13번 포트는 시리얼통신(UART, SPI 및 I2C)을 사용할 경우 디지털 입/출력으로 사용할 수 없습니다.

• 디지털 입/출력 전기적 특성

파라미터	설명	최소 값[V]	최대 값[V]	전류 조건
V _{IH}	HIGH레벨 입력 전압	2.31	-	-
V _{IL}	LOW레벨 입력 전압	0	0.99	-
V _{OH}	HIGH레벨 출력 전압	2.9	-	±8mA(CMOS)
V _{OH}	HIGH레벨 출력 전압	2.4	-	±8mA(TTL)
V _{OL}	LOW레벨 출력 전압	-	0.4	±8mA(CMOS/TTL)

※ 참고: 모든 디지털 입력 포트의 최대 입력전압은 5V이며, 출력포트의 최대 출력전류는 ±8mA입니다.

• 디지털 입/출력 포트 맵핑 정보

LED 맵핑

DIO 맵핑

#7	#6	#5	#4	#3	#2	#1	#0
#15	#14	#13	#12	#11	#10	#9	#8
#23	#22	#21	#20	#19	#18	#17	#16
#31	#30	#29	#28	#27	#26	#25	#24

______ 맵핑 되지 않음

"/mmap/uio0"

시리얼 통신: UART

P4S-342는 2개의 UART포트를 지원합니다. 다음은 P4S-342의 UART통신 사양입니다.

구분	값
포트 수	2
연결선	UART0: 필수(U0TX/4, U0RX/5, GND), 선택(U0RTS/8, U0CTS/9) UART1: 필수(U1TX/10, U1RX/11, GND), 선택(U1RTS/12, U1CTS/13)
신호 레벨	3.3V
통신속도	1,200 ~ 230,400 [bps]
패리티	NONE / EVEN / ODD / MARK / SPACE
데이터비트	8 / 7(7데이터 비트는 반드시 패리티와 함께 사용)
정지비트	1/2
흐름제어	NONE, RTS/CTS
TxDE핀	UARTO - UIOO.8(UARTO RTS), UART1 - UIOO.12(UART1 RTS)

시리얼 통신: SPI

P4S-342는 SPI인터페이스를 지원합니다. 다음은 P4S-342의 SPI통신 사양입니다.

구분	값
포트 수	1
신호 레벨	3.3V
연결선	NSS/0, SCLK/1, MOSI/2, MISO/3
SPI모드	모드0 ~ 3
데이터 전송 순서	LSB > MSB 또는 MSB > LSB
데이터 전송 단위	8bit 또는 16bit
기본 클록	42MHz
분주 비	2 / 4 / 8 / 16 / 32 / 64 / 128 / 256

시리얼 통신: I2C

P4S-342는 I2C인터페이스를 지원합니다. 다음은 P4S-342의 I2C통신 사양입니다.

구분	값
포트 수	1
신호 레벨	3.3V
연결선	SCL, SDA
통신속도	표준모드(100Kbps) 또는 고속모드(400Kbps)
주소지정방식	7비트

스마트 확장보드 통신: SPC

P4S-342는 스마트 확장보드와의 통신을 위한 SPC인터페이스를 지원합니다. 다음은 P4S-342의 SPC통신 사양입니다.

구분	값
포트 수	1
신호 레벨	3.3V
연결선	STX, SRX, SRO

※각 통신 인터페이스 사용에 관한 자세한 내용은 PHPoC Device Programming Guide for p40 문서를 참조하시기 바랍니다

소프트웨어(IDE)

PHPoC 디버거

PHPoC 디버거는 PHPoC 제품의 설정 및 개발에 사용되는 소프트웨어 입니다. 따라서 PHPoC 제품을 사용하기 위해서는 PC에 이 프로그램을 설치해야 합니다.

- PHPoC 디버거 다운로드 페이지
- PHPoC 디버거 매뉴얼 페이지

PHPoC 디버거의 기능 및 특징

- PHPoC 제품으로 php파일 업로드
- PHPoC 제품의 php파일들을 로컬 PC에 다운로드
- PHPoC 제품의 php파일들을 편집
- PHPoC 스크립트 디버깅
- PHPoC 제품 리소스 상태 확인
- PHPoC 제품 환경 값 설정
- PHPoC 제품 펌웨어 업그레이드
- 지원 플랫폼: MS 윈도우

제품 연결

USB로 연결

1. P4S-342의 USB 디바이스 포트와 PC를 USB케이블로 연결합니다.

- 2. PHPoC 디버거를 실행합니다.
- 3. 연결 된 COM PORT를 선택하고 연결버튼(
- 4. USB가 정상적으로 연결 되면 연결 버튼은 비활성화 되고 연결 끊기 버튼(SPD)이 활성화 됩니다.

원격 연결

펌웨어 버전 1.4.0부터 원격 연결 기능이 제공됩니다. 원격 연결에 관한 자세한 내용은 PHPoC 디버거 매 뉴얼의 해당 부분을 참조하시기 바랍니다.

초기화

설정 값 초기화

설정 값 초기화를 수행하면 사용자 비밀번호를 제외한 모든 설정 값이 공장 출고상태로 초기화 됩니다. 뿐만아니라 제품에 저장되어 있던 인증서가 삭제 됩니다.

• 설정 값 초기화 절차

순서	절차	제품 상태	STS LED
1	기능버튼을 짧게 누름 (1초 이하로 짧게 누름)	버튼설정모드 진입	켜짐
2	기능버튼을 5초 이상 누름 (5초 이상 누른 상태 유지)	초기화 준비 중	빠르게 깜박임
3	5초 후 STS LED 확인	초기화 준비 완료	꺼짐
4	준비 완료 후 2초 이내에 누르고 있던 기능버튼을 해제 (2초가 넘으면 순서3으로 돌아감)	초기화 진행	켜짐
5	초기화 후 자동 리부팅	초기화 완료	꺼짐

공장 초기화

공장 초기화를 수행하면 사용자 비밀번호를 포함한 모든 설정 값이 공장 출고상태로 초기화 됩니다. 뿐 만아니라 제품에 저장되어 있던 인증서와 모든 파일들이 삭제 됩니다. 따라서 공장 초기화를 수행하기 에 앞서 제품에 저장 된 파일들을 반드시 백업하시기 바랍니다.

• 공장 초기화 절차

웹 인터페이스

PHPoC는 웹 인터페이스 제공을 위한 웹서버를 내장하고 있습니다. PHPoC는 HTTP 요청이 오면 요청한 파일이 존재할 경우 해당 php파일을 실행합니다. 이 웹서버는 PHPoC의 메인 태스크와 독립적으로 동작 합니다. 웹 서버의 통신포트는 TCP 80번이며 인터넷 익스플로러, 크롬, 파이어폭스 또는 사파리 등 다양 한 웹 브라우저를 통해 접근이 가능합니다.

사용 방법

웹 인터페이스를 사용하기 위해서는 기본 웹 페이지인 "index.php" 파일이 제품에 저장되어 있어야 합니다. 제품을 네트워크에 연결하고 PC와 제품의 IP주소를 같은 서브넷으로 설정한 후 웹 브라우저 주소 창에 제품 IP주소를 입력하여 웹 페이지로 접속 합니다.

PHPoC	×				
← → C fi	192.168.0.1	• 🛊 🔮 ≡			
Hello World					

파일 이름이 "index.php"가 아닌 경우에는 제품 IP주소 뒤에 파일 경로를 다음과 같이 입력해 주어야 합니다.

РНРоС	×	2			x
(← → C f	A 🗋 192.168.0.1/a.php	0		Ś	≡
Hello World					

웹 인터페이스 활용

PHPoC가 웹 서버로 동작할 때 웹페이지에 포함된 php코드를 실행합니다. 따라서 사용자는 웹 페이지 안에 각각의 인터페이스들(디지털 I/O, UART 및 ADC등)과 데이터를 주고받는 코드를 삽입할 수 있습니 다.

특히 웹 소켓을 활용하면 이러한 데이터를 실시간으로 주고 받을 수 있습니다.

웹 인터페이스 기능은 제품이 버튼설정모드인 경우에도 동작하므로 매우 유용합니다. 특히 사용자가 원 하는 기능을 웹 페이지에 구현해 놓으면 무선랜 간편연결기능을 이용하여 무선랜으로 쉽게 제품에 접근 하여 활용할 수 있습니다.

무선랜 간편연결

제품이 동작 중인 상태에서 기능버튼을 짧게 누르면 제품은 버튼설정모드로 진입합니다. 이 때 제품에 USB무선랜어댑터가 장착되어 있으면 무선랜 간편연결기능이 활성화 되어 스마트폰이나 노트북 등 무선 랜 연결이 가능한 장치를 제품에 연결할 수 있습니다.

※ 버튼설정모드 상태에서 기본 태스크는 동작하지 않으며 오직 웹 인터페이스용 태스크만 동작합니다. ※ 무선랜 간편연결기능은 USB무선랜어댑터가 장착 된 상태에서만 활성화 됩니다.

SSID

버튼설정모드에 진입하여 무선랜 간편연결기능이 활성화 되면 제품은 자신의 MAC주소가 포함 된 고유 한 SSID를 사용하여 AP처럼 동작합니다. SSID는 "phpoc_"라는 접두사 뒤에 제품의 MAC주소의 마지막 6자리로 구성됩니다. 예를 들어 제품의 MAC주소가 "0030f9060101"이라면 SSID는 "phpoc_060101"이 됩니다.

무선랜 연결

스마트폰이나 노트북에서 제품의 SSID를 찾아 연결합니다.

DHCP

무선랜 간편설정기능을 이용하여 연결하면 제품으로부터 IP를 자동으로 할당 받습니다. 이 때 제품의 IP 주소는 192.168.0.1로 고정 값이며 클라이언트로 192.168.X.X대역의 IP주소를 할당해 줍니다.

제품 접근

무선랜이 연결 되면 웹 브라우저에서 IP주소를 입력하여 제품으로 접근할 수 있습니다.

€ 192.168.0.1

비밀번호 설정

제품에 비밀번호를 설정하면 USB 또는 네트워크를 통해 제품에 연결할 때 반드시 해당 비밀번호를 입 력해야 합니다.

비밀번호 설정에 관한 자세한 내용은 PHPoC 디버거 매뉴얼의 해당 부분을 참조하시기 바랍니다.

무한 리셋 상태에서 복구하기

PHPoC는 기본적으로 부팅 후 자동적으로 정의 된 스크립트를 실행합니다. 따라서 system함수의 "reboot" 명령어 등을 소스코드에서 잘못 사용하면 제품이 무한 리셋 상태에 빠질 수 있습니다. 이를 복 구하기 위해서는 부팅 후 스크립트의 실행을 멈춰야 합니다. 다음 절차대로 따라 하시기 바랍니다.

1. ISP모드로 진입하기

제품의 기능 버튼(FUNC)을 누른 상태에서 전원을 공급하여 ISP모드로 진입합니다. ISP모드로 진 입하면 PHP코드는 실행되지 않는 상태에서 디버거로 연결할 수 있습니다.

2. PHPoC 디버거로 제품 연결

PC와 제품을 USB케이블로 연결하고 포트를 선택해 열기 합니다. 이 때 제품이 ISP모드라는 메시 지가 팝업 됩니다.

3. 제품 리부팅

PHPoC 디버거의 기능 메뉴의 "제품 리부팅"을 실행합니다. 제품이 리부팅 한 후 ISP모드에서는 빠져 나오지만 PHPoC 스크립트의 실행은 하지 않는 상태가 됩니다.

4. 코드 수정

무한 리셋 증상을 발생시킨 코드를 적절하게 수정합니다.

디바이스 정보

구분	개수	파일경로	비고
UART	2	/mmap/uart0~1	-
NET	1	/mmap/net1	-
TCP	5	/mmap/tcp0~4	-
UDP	5	/mmap/udp0~4	-
디지털 I/O	1	/mmap/uio0	pin #0 ~ #21, #30, #31
ADC	2	/mmap/adc0~1	-
ST	8	/mmap/st0~7	-
HT	4	/mmap/ht0~3	-
SPI	1	/mmap/spi0	-
I2C	1	/mmap/i2c0	-
RTC	1	/mmap/rtc0	-
UM	4	/mmap/um0~3	-
NM	1	/mmap/nm0	-
SPC	1	/mmap/spc0	-

※ 각 디바이스 사용에 관한 자세한 내용은 PHPoC Device Programming Guide for p40 문서를 참조하 시기 바랍니다.